198 research outputs found

    Revealing User Familiarity Bias in Task-Oriented Dialogue via Interactive Evaluation

    Full text link
    Most task-oriented dialogue (TOD) benchmarks assume users that know exactly how to use the system by constraining the user behaviors within the system's capabilities via strict user goals, namely "user familiarity" bias. This data bias deepens when it combines with data-driven TOD systems, as it is impossible to fathom the effect of it with existing static evaluations. Hence, we conduct an interactive user study to unveil how vulnerable TOD systems are against realistic scenarios. In particular, we compare users with 1) detailed goal instructions that conform to the system boundaries (closed-goal) and 2) vague goal instructions that are often unsupported but realistic (open-goal). Our study reveals that conversations in open-goal settings lead to catastrophic failures of the system, in which 92% of the dialogues had significant issues. Moreover, we conduct a thorough analysis to identify distinctive features between the two settings through error annotation. From this, we discover a novel "pretending" behavior, in which the system pretends to handle the user requests even though they are beyond the system's capabilities. We discuss its characteristics and toxicity while emphasizing transparency and a fallback strategy for robust TOD systems

    On the Effectiveness of Low-Rank Matrix Factorization for LSTM Model Compression

    Get PDF

    EvalLM: Interactive Evaluation of Large Language Model Prompts on User-Defined Criteria

    Full text link
    By simply composing prompts, developers can prototype novel generative applications with Large Language Models (LLMs). To refine prototypes into products, however, developers must iteratively revise prompts by evaluating outputs to diagnose weaknesses. Formative interviews (N=8) revealed that developers invest significant effort in manually evaluating outputs as they assess context-specific and subjective criteria. We present EvalLM, an interactive system for iteratively refining prompts by evaluating multiple outputs on user-defined criteria. By describing criteria in natural language, users can employ the system's LLM-based evaluator to get an overview of where prompts excel or fail, and improve these based on the evaluator's feedback. A comparative study (N=12) showed that EvalLM, when compared to manual evaluation, helped participants compose more diverse criteria, examine twice as many outputs, and reach satisfactory prompts with 59% fewer revisions. Beyond prompts, our work can be extended to augment model evaluation and alignment in specific application contexts

    Aligning Large Language Models through Synthetic Feedback

    Full text link
    Aligning large language models (LLMs) to human values has become increasingly important as it enables sophisticated steering of LLMs, e.g., making them follow given instructions while keeping them less toxic. However, it requires a significant amount of human demonstrations and feedback. Recently, open-sourced models have attempted to replicate the alignment learning process by distilling data from already aligned LLMs like InstructGPT or ChatGPT. While this process reduces human efforts, constructing these datasets has a heavy dependency on the teacher models. In this work, we propose a novel framework for alignment learning with almost no human labor and no dependency on pre-aligned LLMs. First, we perform reward modeling (RM) with synthetic feedback by contrasting responses from vanilla LLMs with various sizes and prompts. Then, we use the RM for simulating high-quality demonstrations to train a supervised policy and for further optimizing the model with reinforcement learning. Our resulting model, Aligned Language Model with Synthetic Training dataset (ALMoST), outperforms open-sourced models, including Alpaca, Dolly, and OpenAssistant, which are trained on the outputs of InstructGPT or human-annotated instructions. Our 7B-sized model outperforms the 12-13B models in the A/B tests using GPT-4 as the judge with about 75% winning rate on average.Comment: Preprint, 9 pages (with 10 pages of supplementary

    The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning

    Full text link
    Language models (LMs) with less than 100B parameters are known to perform poorly on chain-of-thought (CoT) reasoning in contrast to large LMs when solving unseen tasks. In this work, we aim to equip smaller LMs with the step-by-step reasoning capability by instruction tuning with CoT rationales. In order to achieve this goal, we first introduce a new instruction-tuning dataset called the CoT Collection, which augments the existing Flan Collection (including only 9 CoT tasks) with additional 1.84 million rationales across 1,060 tasks. We show that CoT fine-tuning Flan-T5 (3B & 11B) with CoT Collection enables smaller LMs to have better CoT capabilities on unseen tasks. On the BIG-Bench-Hard (BBH) benchmark, we report an average improvement of +4.34% (Flan-T5 3B) and +2.60% (Flan-T5 11B), in terms of zero-shot task accuracy. Furthermore, we show that instruction tuning with CoT Collection allows LMs to possess stronger few-shot learning capabilities on 4 domain-specific tasks, resulting in an improvement of +2.24% (Flan-T5 3B) and +2.37% (Flan-T5 11B), even outperforming ChatGPT utilizing demonstrations until the max length by a +13.98% margin. Our code, the CoT Collection data, and model checkpoints are publicly available.Comment: EMNLP 2023 (Main Conference
    corecore